Scoring and classifying regions via multimodal transportation networks
نویسندگان
چکیده
منابع مشابه
SOLVING BEST PATH PROBLEM ON MULTIMODAL TRANSPORTATION NETWORKS WITH FUZZY COSTS
Numerous algorithms have been proposed to solve the shortest-pathproblem; many of them consider a single-mode network and crispcosts. Other attempts have addressed the problem of fuzzy costs ina single-mode network, the so-called fuzzy shortest-path problem(FSPP). The main contribution of the present work is to solve theoptimum path problem in a multimodal transportation network, inwhich the co...
متن کاملScoring and Classifying with Gated Auto-Encoders
Auto-encoders are perhaps the best-known non-probabilistic methods for representation learning. They are conceptually simple and easy to train. Recent theoretical work has shed light on their ability to capture manifold structure, and drawn connections to density modeling. This has motivated researchers to seek ways of auto-encoder scoring, which has furthered their use in classification. Gated...
متن کاملUser-based representation of time-resolved multimodal public transportation networks
Multimodal transportation systems, with several coexisting services like bus, tram and metro, can be represented as time-resolved multilayer networks where the different transportation modes connecting the same set of nodes are associated with distinct network layers. Their quantitative description became possible recently due to openly accessible datasets describing the geo-localized transport...
متن کاملMultimodal Transportation Systems
We present a case study of a multimodal routing system that takes into account both dynamic and stochastic travel time information. A multimodal network model is presented that makes it possible to model the travel time information of each transportation mode differently. This travel time information can either be static or dynamic, or either deterministic or stochastic. Next to this, a Dijkstr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Network Science
سال: 2019
ISSN: 2364-8228
DOI: 10.1007/s41109-019-0191-7